Learning Semantic Deformation Flows with 3D Convolutional Networks

نویسندگان

  • Mehmet Ersin Yümer
  • Niloy J. Mitra
چکیده

Shape deformation requires expert user manipulation even when the object under consideration is in a high fidelity format such as a 3D mesh. It becomes even more complicated if the data is represented as a point set or a depth scan with significant self occlusions. We introduce an end-to-end solution to this tedious process using a volumetric Convolutional Neural Network (CNN) that learns deformation flows in 3D. Our network architectures take the voxelized representation of the shape and a semantic deformation intention (e.g., make more sporty) as input and generate a deformation flow at the output. We show that such deformation flows can be trivially applied to the input shape, resulting in a novel deformed version of the input without losing detail information. Our experiments show that the CNN approach achieves comparable results with state of the art methods when applied to CAD models. When applied to single frame depth scans, and partial/noisy CAD models we achieve ∼60% less error compared to the state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Point-wise Convolutional Neural Network

Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network i...

متن کامل

Deep learning and its application to medical image segmentation

One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and sem...

متن کامل

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard “dense” implementations of convolutional networks are very ineffici...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016